Analysis of a Regenerative Gas Turbine Cycle for Performance Evaluation
نویسندگان
چکیده
The effect of a regenerative heat exchanger in a gas turbine is analyzed using a regenerative Brayton cycle model, where all fluid friction losses in the compressor is quantified by an isentropic efficiency term and all global irreversibilities in the heat exchanger are taken into account by means of an effective efficiency. This analysis, which generalizes that reported by Gordon and Huleihil for a simple, non-regenerative Brayton cycle, provides a theoretical tool for the selection of optimal operating conditions in a regenerative gas turbine for optimum value of compressor efficiency. Regenerative gas turbine engine cycle is presented that yields higher cycle efficiencies than simple cycle operating under the same conditions. The power output, efficiency and specific fuel consumption are simulated with respect to operating conditions. The analytical formulae about the relation to determine the thermal efficiency are derived taking into account the effected operating conditions (ambient temperature, compression ratio, regenerator effectiveness, compressor efficiency and turbine inlet temperature). Model calculations for a wide range of parameters are presented, as are comparisons with simple gas turbine cycle. The power output and thermal efficiency are found to be increasing with the regenerative effectiveness, and the compressor efficiency. The efficiency increased with increase the compression ratio to 15, then efficiency decreased with increased compression ratio, but in simple cycle the thermal efficiency always increases with increased in compression ratio. The increased in ambient temperature caused decreased thermal efficiency, but the increased in turbine inlet temperature increase thermal efficiency.
منابع مشابه
Improvement of simple and regenerative gas turbine using simple and ejector-absorption refrigeration
The exhaust gases of gas turbine power plant carry a significant amount of thermal energy that is usually expelled to the atmosphere this causes a reduction in net work and efficiency of gas turbine. On the other hand, the generated power and efficiency of gas turbine plants depend largely on the temperature of the inlet air, So that they both increase as the inlet air temperature decreases. Th...
متن کاملThermodynamic Analysis and Statistical Investigation of Effective Parameters for Gas Turbine Cycle using the Response Surface Methodology
In this paper, the statistical analyses are presented to study the thermal efficiency and power output of gas turbine (GT) power plants. For analyzing gas turbine operation and performance, a novel approach is developed utilizing the response surface methodology (RSM) which is based on the central composite design (CCD) method. An attempt is made to study the effect of some operational factors ...
متن کاملPerformance analysis a gas turbine cycle equipped with a double acting type stirling engine in a power generating unit
The aim of this study is to investigate the performance of a gas turbine cycle equipped with a Stirling engine from the thermodynamic point of view. In this system, part of the heat loss from the gas turbine is transmitted to a Stirling engine to generate more power. In the proposed system analysis, the governing equations of the hybrid cycle are modeled in MATLAB software and Schmidt and ideal...
متن کاملExergy Analysis of a Novel Combined System Consisting of a Gas Turbine, an Organic Rankine Cycle and an Absorption Chiller to Produce Power, Heat and Cold
The current work investigates the exergy analysis of a new system to generate power, heat, and refrigeration. In the proposed system, the heat loss of a gas turbine (GT) is first recovered by a Heat Recovery Steam Generator (HRSD), then by an Organic Rankine Cycle (ORC) to generate warm water and additional power, respectively. In the ORC, reheating is used to increase the output power, the req...
متن کاملتحلیل انرژی-اگزرژی و مطالعۀ پارامتری بازیابی گرمای اتلافی پیکربندیهای مختلف سیکل توربین گاز با استفاده از سیکل رانکین آلی
Since ordinary gas turbine cycles in actual condition comprise simple cycle, regenerative cycle, reheat cycle and intercooler cycle between high pressure and low pressure compressors, these cycles include 16 combined cycles by combining with a Rankine cycle that consists of three organic fluids and steam. In the present work, the thermodynamic analysis of the above combined cycles with three or...
متن کامل